奥数网
全国站
您现在的位置:奥数 > 小学数学网 > 数学大师,数学家 > 正文

解读数学大师之伽罗华的故事

来源:网络资源 文章作者:奥数网编辑 2016-07-26 13:49:28

  奥数网为广大中小学生提供数学大师之伽罗华的故事,希望能帮助大家迅速提高数学成绩!

  在公元前20 世纪左右,巴比伦人就能解二次方程了。16 世纪欧洲文艺复兴时期,意大利数学家找到了三次方程的求根公式,不久,费尔拉里又发现了四次方程的根式求解方法。正当数学家们踌躇满志地向五次方程及更高次代数方程进军时,遇到了料想不到的困难,各种努力均告失败。拉格朗日称之为“好像是向人类智慧的挑战”,他透彻地分析了前人所得到的次数低于5 的代数方程的解法,机智地预见到也许5 次以上的代数方程无一般的公式解(但未能给出证明)。1824 年,年轻的挪威数学家阿贝尔证明了拉格朗日的这一设想,从而摘取了数学皇冠上的一颗明珠。不过,其证明并没有给出一个准则来判定一个具体数字系数的高次代数方程能否用根号求解。他们的功绩不容抹煞,但与伽罗华的光辉成就相比就逊色多了。伽罗华一开始就表现出自己的风格:他感兴趣的不是具体的数学问题,不是研究高次代数方程所得出的具体结论,而是解决这些问题的一般方法,是能概括这些具体成果并决定数学长期发展的深刻理论。

  在伽罗华以前的数学家,总是努力从已知概念和定理出发寻求新的证明,致力于数学技巧的竞争,而伽罗华所走的道路乃是寻求新问题所需要的新名称、符号,即首先进行概念的突破,然后用新概念来构造新证明。伽罗华用非常独到的思路研究解方程的步骤,注意到方程根的对称性以及根变换之间的关系,定义了“群”的概念,并给以活的灵魂。伽罗华的工作不是研究方程本身,而是研究与方程密切联系的变换群,这样就使方程的特性反映在变换群的特性上,因而弄清了群的规律性,也就透彻地解决了方程的求解问题。更重要的是,群所处理的是抽象的对象,由群的理论研究获得的一般结果,带有深刻的普遍性。因此,以群论为代表的数学理论,是处理问题的一种深刻的现代数学方法,为其他研究提供了有力的数学工具。这种理论对于近代数学、物理学的发展,甚至对20 世纪结构主义哲学思想的产生,都产生了深远的影响,具有划时代的意义。但由于当时人们沉醉于对形式和技巧的盲目追求,旧时代数学家未能理解伽罗华的数学研究,因此,直至1846年(而此时伽罗华已去世14 年),这些主要成果与见解才发表在刘维尔创办的《纯粹数学和应用数学杂志》上,以及约当1870 年出版的《置换和代数方程专论》一书中。这样,伽罗华超越时代的天才思想逐渐被人们理解和承认,并发展成今天这样一门博大精深的基础学科——近世代数。

   欢迎访问奥数网,您还可以通过手机等移动设备查询小学试题库、奥数题库、小升初动态、竞赛辅导、重点中学信息等,2018小升初我们一路相伴。>>[点击查看]